written 8.3 years ago by | • modified 8.3 years ago |
Mumbai University > Electronics and Telecommunication > Sem5 > Random Signal Analysis
Marks: 10M
Year: Dec 2014
written 8.3 years ago by | • modified 8.3 years ago |
Mumbai University > Electronics and Telecommunication > Sem5 > Random Signal Analysis
Marks: 10M
Year: Dec 2014
written 8.3 years ago by | • modified 8.3 years ago |
X and Y are discrete RVs
To find c:
We can tabulate the probabilities as follows:
P( x=i,y=j ) = c( i + j) 1≤x≤4,1≤y≤3
X╲Y | 1 | 2 | 3 | Total |
---|---|---|---|---|
1 | 2c | 3c | 4c | 9c |
2 | 3c | 4c | 5c | 12c |
3 | 4c | 5c | 6c | 15c |
4 | 5c | 6c | 7c | 18c |
Total | 14c | 18c | 22c | 54c |
Since $∑p_i=1$
$∴ 54c=1$
$∴c=\frac1{54}$
With this value the probability distribution is
X╲Y | 1 | 2 | 3 | Total |
---|---|---|---|---|
1 | $\frac2{54}$ | $\frac3{54}$ | $\frac4{54}$ | $\frac9{54}$ |
2 | $\frac3{54}$ | $\frac4{54}$ | $\frac5{54}$ | $\frac{12}{54}$ |
3 | $\frac4{54}$ | $\frac5{54}$ | $\frac6{54}$ | $\frac{15}{54}$ |
4 | $\frac5{54}$ | $\frac6{54}$ | $\frac7{54}$ | $\frac{18}{54}$ |
Total | $\frac{14}{54}$ | $\frac{18}{54}$ | $\frac{22}{54}$ | 1 |
To find:
E(X/Y=1),Var(X/Y=1)
The marginal probability distribution of Y is:
Y | P(Y) |
---|---|
1 | $\frac{14}{54}$ |
2 | $\frac{18}{54}$ |
3 | $\frac{22}{54}$ |
Conditional Probabilities of X are
$$P(X=1/Y=1)=\frac{P(X=1,Y=1)}{P(Y=1)} =\frac{\frac{\frac{2}{54}}{14}}{54}=\frac{1}{7}$$
$$P(X=2/Y=1)=\frac{P(X=2,Y=1)}{P(Y=1)} =\frac{\frac{(3/54)}{14}}{54}=3/14$$
$$P(X=3/Y=1)=P(X=3,Y=1)/P(Y=1) =\frac{(\frac{(4/54)}{14})}{54}=2/7$$
$$P(X=4/Y=1)=\frac{P(X=4,Y=1)}{P(Y=1)} =\frac{((5/54)/14)}{54}=5/14$$
Now
$E(X/Y=1)=∑x_i p(x=i/y=1)$
=$\frac17+\frac6{14}+\frac67+\frac{20}{14}$
$E(X/Y=1)=\frac{20}7$
$E(\frac{X^2}{Y=1})=∑x_i^2 p(x=i/y=1)=\frac17+\frac{12}{14}+\frac{18}7+\frac{80}{14}$
$E(X^2/Y=1)=\frac{65}7$
$Var(X/Y=1)=E(X^2/Y=1)-{E(X/Y=1)}^2$
$=\frac{65}7-(\frac{20}7)^2$
=9.2857-8.1633
Var($\frac{X}{Y}=1$)=1.1224