| written 9.5 years ago by | • modified 5.6 years ago |
For a source which generates letters from an alphabet $A= { a1 , a2 , a3 , a4 , a5 }$ with $P (a_1 ) = P (a_3) = 0.2 , P (a_2 ) = 0.4, P (a_4 ) = P (a_5 ) = 0.1$ also calculate entropy of the source.
| written 9.5 years ago by | • modified 5.6 years ago |
For a source which generates letters from an alphabet $A= { a1 , a2 , a3 , a4 , a5 }$ with $P (a_1 ) = P (a_3) = 0.2 , P (a_2 ) = 0.4, P (a_4 ) = P (a_5 ) = 0.1$ also calculate entropy of the source.
| written 9.5 years ago by | • modified 9.5 years ago |

$P ( a_4‘)= P (a_4 ) + P (a_5 ) = 0.1 + 0.1 = 0.2$
$C (a_4 ) = α_1 * 0$
$C (a_5 ) = α_1 * 1$

$P (a_3’ ) = P (a_3 ) + P (a_4’ ) = 0.2 + 0.2 =0.4$
$C ( a_3 ) =α_2 * 0$
$C ( a_4 ‘ ) = α_2 * 1 = α_1$
$C ( a_4 ) = α_1 * 0 = α_2 * 1 * 0 = α_2 * 10$
$C (a_5) = α_1 * 1 = α_2 * 1 * 1 = α_2 * 1$

$P (a_3” ) = P (a_3’ ) + P (a_1 ) = 0.4 + 0.2 = 0.6$
$C (a_3’ ) = α_2 = α_3 * 0$
$C ( a_1 ) = α_3 * 1 = 0 * 1 = 01$
$C ( a_3 ) = α_3 * 00 = 0 * 00 =000$
$C (a_4 ) = α_3 * 010 = 0 * 010 = 0010$
$C (a_5 ) = α_3 *011 = 0 * 011 =0011$
| Symbols | Codeword |
|---|---|
| $a_1$ | 01 |
| $a_2$ | 1 |
| $a_3$ | 000 |
| $a_4$ | 0010 |
| $a_5$ | 0011 |
Verification

| Symbols | Codeword |
|---|---|
| $a_1$ | 01 |
| $a_2$ | 1 |
| $a_3$ | 000 |
| $a_4$ | 0010 |
| $a_5$ | 0011 |
$Entropy =_I log_2 (P_i)$
$= - (0.2 log_2 0.2 + 0.4 log_2 0.4 + 0.2 log_2 0.2 + 0.1 log_2 0.1 + 0.1 log_2 0.1 )$
Entropy = 2.122 bits/ symbol