0

495views

Compute the respective values in the table using maximum minimum composition rule.

**1 Answer**

0

495views

Compute the respective values in the table using maximum minimum composition rule.

0

2views

written 5.3 years ago by |

The values in Rule Strength table.

$M_{MD} \ ^{(x)} \cap M_{MG} \ ^{(y)} = \frac{3}{5}$

$M_{MD} \ (x) \cap M_{2G} \ ^{(y)} = \frac{2}{5}$

$M_{LD} \ (x) \cap M_{mG} \ ^{(y)} = \frac{1}{5}$

$M_{LD} \ (x) \cap M_{LG} \ ^{(y)} = \frac{1}{5}$

Max of all the above four value is

$M_{MD} \ ^{(x)} \cap M_{mG} \ ^{(y)} = \frac{3}{5}$

So $M_{Wash \ Time} \ ^{(z)} = \frac{3}{5}$

$\therefore$ $M_{wash \ Time} \ ^{(z)} = \frac{z – 10}{15}$

$\frac{40 – z}{15}$

$\frac{z – 10}{15} = \frac{3}{5}$

$\frac{40 – z}{15} = \frac{3}{5}$

= 31

$Z^* = \frac{z_1 + z_2}{2} = \frac{19 + 31}{2} = 25 \ mins$

ADD COMMENT
EDIT

Please log in to add an answer.