0
689views
written 5.7 years ago by |
If ‘t’ is the depth of cut and ‘h’ its width assumed to remain unchanged during the shearing process, the area of the shear plane,
$A_{s}=\frac{b . t}{\sin \emptyset}$
Average shear stress on the shear plane.
$\sigma_{\Delta v g}=\frac{F_{s}}{A_{s}}=\frac{\left(F_{p} \cos \emptyset-F_{q} \sin \emptyset\right)}{b . t / \sin \emptyset}$
Also, Average normal stress on the shear plane.
$\sigma_{A \nu g}=\frac{N_{s}}{A_{s}}=\frac{\left(F_{p} \sin \emptyset-F_{q} \cos \emptyset\right)}{b \cdot t / \sin \emptyset}$