| written 6.3 years ago by | • modified 6.3 years ago |
Solution:
let A = \begin{bmatrix} 1 & 3 & 3\ 1 & 4 & 4\ 1 & 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 12 \ 15 \ 13 \end{bmatrix} C = \begin{bmatrix} x \ y \ z \end{bmatrix}
|A| = \begin{vmatrix} 1 & 3 & 3 \ 1 & 4 & 4\ 1 & 3 & 4 \end{vmatrix}
$|A| = 1(16-12)-3(4-4)+3(3-4)$
$|A| = 4 - 0 - 3$
$|A| = 2 \neq 0$
$A^{-1} exists$
$Matrix of minors = \quad \begin{bmatrix} \quad \begin{vmatrix} 4 & 4 \\ 3 & 4 \end{vmatrix} & \quad \begin{vmatrix} 1 & 4 \\ 1 & 4 \end{vmatrix} & \quad \begin{vmatrix} 1 & 4 \\ 1 & 3 \end{vmatrix} \\ \quad \begin{vmatrix} 3 & 3 \\ 3 & 4 \end{vmatrix} & \quad \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} & \quad \begin{vmatrix} 1 & 3 \\ 1 & 3 \end{vmatrix}\\ \quad \begin{vmatrix} 3 & 3 \\ 4 & 4 \end{vmatrix} & \quad \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} & \quad \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} \\ \end{bmatrix} $
= \begin{bmatrix} 4 & 0 & -1 \ 3 & 1 & 0\ 0 & 1 & 1 \end{bmatrix}
$Matrix of cofactors = \quad \begin{bmatrix} 4 & 0 & -1 \\ -3 & 1 & 0\\ 0 & -1 & 1 \end{bmatrix}$

and 3 others joined a min ago.