written 5.6 years ago by | • modified 5.6 years ago |
Solution:
$\frac{\sin 4 A+\sin 5 A+\sin 6 A}{\cos 4 A+\cos 5 A+\cos 6 A}$
$=\frac{(\sin 4 A+\sin 6 A)+\sin 5 A}{(\cos 4 A+\cos 6 A)+\cos 5 A}$
$=\frac{2 \sin \left(\frac{4 A+6 A}{2}\right) \cos \left(\frac{4 A-6 A}{2}\right)+\sin 5 A}{2 \cos \left(\frac{4 A+6 A}{2}\right) \cos \left(\frac{4 A-6 A}{2}\right)+\cos 5 A}$
$=\frac{ \sin 5 A \ [2 \cos (-A)+1]}{\cos 5 A [2 \cos (-A)+1]}$
$=\tan 5 A$
written 5.6 years ago by |
Solution:
$\frac{\sin 4 A+\sin 5 A+\sin 6 A}{\cos 4 A+\cos 5 A+\cos 6 A}$
$=\frac{(\sin 4 A+\sin 6 A)+\sin 5 A}{(\cos 4 A+\cos 6 A)+\cos 5 A}$
$=\frac{2 \sin \left(\frac{4 A+6 A}{2}\right) \cos \left(\frac{4 A-6 A}{2}\right)+\cos 5 A}{2 \cos \left(\frac{4 A+6 A}{2}\right) \cos \left(\frac{4 A-6 A}{2}\right)+\cos 5 A}$
$=\frac{2 \sin 5 A \cos (-A)+\cos 5 A}{\cos 5 A}[2 \cos (-A)+1]$
$=\tan 5 A$