0
787views
prove that $\frac{\cos 2 A+2 \cos 4 A+\cos 6 A}{\cos A+2 \cos 3 A+\cos 5 A}=\cos A-\sin A \tan 3 A$
1 Answer
0
1views

Solution:

$\frac{\cos 2 A+2 \cos 4 A+\cos 6 A}{\cos A+2 \cos 3 A+\cos 5 A}=\frac{2 \cos 4 A+\cos 2 A+\cos 6 A}{2 \cos 3 A+\cos A++\cos 5 A}$

$=\frac{2 \cos 4 A+2 \cos \left(\frac{2 A+6 A}{2}\right) \cos \left(\frac{2 A-6 A}{2}\right)}{2 \cos 3 A+2 \cos \left(\frac{A+5 A}{2}\right) \cos \left(\frac{A-5 A}{2}\right)}$

$\frac{\cos 2 A+2 \cos 4 A+\cos 6 A}{\cos A+2 \cos 3 A+\cos 5 A}=\frac{2 \cos 4 A+2 \cdot \cos 4 A \cdot \cos (-2 A)}{2 \cos 3 A+2 \cdot \cos 3 A \cos (-2 A)}$

$=\frac{2 \cos 4 A(1+\cos (-2 A))}{2 \cos 3 A(1+\cos (-2 A))}$

$=\frac{\cos 4 A}{\cos 3 A}$

$=\frac{\cos (3 A+A)}{\cos 3 A}$

$=\frac{\cos 3 A \cos A-\sin 3 A \sin A}{\cos 3 A}$

$=\frac{\cos 3 A \cos A}{\cos 3 A}-\frac{\sin 3 A \sin A}{\cos 3 A}$

$=\cos A-\tan 3 A \sin A$

$=R . H . S$

Please log in to add an answer.