| written 6.3 years ago by |
Solution:
$\frac{\cos 2 A+2 \cos 4 A+\cos 6 A}{\cos A+2 \cos 3 A+\cos 5 A}=\frac{2 \cos 4 A+\cos 2 A+\cos 6 A}{2 \cos 3 A+\cos A++\cos 5 A}$
$=\frac{2 \cos 4 A+2 \cos \left(\frac{2 A+6 A}{2}\right) \cos \left(\frac{2 A-6 A}{2}\right)}{2 \cos 3 A+2 \cos \left(\frac{A+5 A}{2}\right) \cos \left(\frac{A-5 A}{2}\right)}$
$\frac{\cos 2 A+2 \cos 4 A+\cos 6 A}{\cos A+2 \cos 3 A+\cos 5 A}=\frac{2 \cos 4 A+2 \cdot \cos 4 A \cdot \cos (-2 A)}{2 \cos 3 A+2 \cdot \cos 3 A \cos (-2 A)}$
$=\frac{2 \cos 4 A(1+\cos (-2 A))}{2 \cos 3 A(1+\cos (-2 A))}$
$=\frac{\cos 4 A}{\cos 3 A}$
$=\frac{\cos (3 A+A)}{\cos 3 A}$
$=\frac{\cos 3 A \cos A-\sin 3 A \sin A}{\cos 3 A}$
$=\frac{\cos 3 A \cos A}{\cos 3 A}-\frac{\sin 3 A \sin A}{\cos 3 A}$
$=\cos A-\tan 3 A \sin A$
$=R . H . S$

and 5 others joined a min ago.