0
963views
Convert the following filters with system functions (i) $H(s)=\frac{1}{(s+2)(s+0.6)}$ (ii) $H(s)=\frac{(s+0.1)}{(s+0.1)^{2}+9}$ into a digital filter by means of impulse invariant and BLT method.
1 Answer
0
11views
| written 6.2 years ago by |
(i) $H(s)=\frac{1}{(s+2)(s+0.6)} \cdots(1)$
Let $\frac{1}{(s+2)(s+0.6)}=\frac{A}{s+2}+\frac{B}{s+0.6}$
$\therefore A=(s+2) \times\left.\frac{1}{(s+2)(s+0.6)}\right|_{s=-2}=\frac{1}{-2+0.6}=\frac{-5}{7}$
$B=(s+0 .6) \times\left.\frac{1}{(s+2)(s+0.6)}\right|_{s=-0.6}=\frac{1}{-0.6+2}=\frac{5}{7}$
$\therefore H(s)=\frac{-5 / 7}{s+2}+\frac{5 / 7}{s+0.6}$
Here, $s=-0.6$ and $s=-2$ are the poles in s-plane.
Case 1: By Impulse Invariance Transformation
$\frac{1}{s-p_{i}} =\frac{z}{z-e^{p_{i} T}}$
$\therefore$ Transfer function of the digital filter
$H(z)=\frac{-5 z / 7}{z-e^{-2 T}}+\frac{5 z / 7}{z-e^{-0.6 …
ADD COMMENT
EDIT
Please log in to add an answer.

and 5 others joined a min ago.
and 2 others joined a min ago.