0
14kviews
Determine the value of Young's modulus and Poisson's ratio of a metallic bar of length 30cm, width 4 cm, and depth 4 cm, when the bar is subjected o an axial compressive load of 400 kN.

The decrease in length is given as 0.075 cm and increase in width is 0.003 cm.

3 Answers
3
4.2kviews

Given - L = 300 mm , b = 40mm, d = 40mm, $P = 400 \times 10^{3}N$, $\delta L = 0.075 mm$ , $\delta b = 0.03mm $

Solution:

Stress = $\delta$ = $\frac{P}{A}$ = $ \frac{400 \times 10^{3}}{40 \times 40}$ = $250 N/mm^{2}$

Strain = $e$ = $\frac{\delta …

Create a free account to keep reading this post.

and 3 others joined a min ago.

1
1.0kviews

Determine the young’s modulus and Possion’s ratio of a metallic bar of length 25cm breadth 3cm depth 2cm when the beam is subjected to an axial compressive load 240KN. The decrease in length is given by 0.05cm and increase in breadth 0.002

Create a free account to keep reading this post.

and 3 others joined a min ago.

0
523views

please breaf me more

Create a free account to keep reading this post.

and 5 others joined a min ago.

Please log in to add an answer.