Question: A short column of external dia 40 cm and internal diameter 20 cm carries an eccentric load of 80 kN.Find greatest eccentricity which the load can have without producing tension on the cross-section.
0
somd-2 • 18 views
ADD COMMENTlink
modified 8 days ago  • written 8 days ago by gravatar for bharathchippa49 bharathchippa490
0

Given:

For short circular (hollow) column

D = 40 cm = 400 mm

d = 20 cm = 200 mm

Criteria - no tensional base

Solution:

C/S Area = $A = \frac{\pi}{4}(D^{2} - d^{2}) = \frac{\pi}{4}(400^{2} - 200^{2}) = 94.25 \times 10^{3} mm^{2}$

M I = $I = \frac{\pi}{64}(D^{4} - d^{4}) = \frac{\pi}{64}(400^{4} - 200^{4}) = 11.78 \times 10^{8} mm^{4}$

$y_{max} = \frac{D}{2} = \frac{400}{2} = 200 mm$

For no tension Condition,

$\sigma_{o} = \sigma_{b}$

$\therefore \frac{P}{A} = \frac{P.e.y_{max}}{I}$

$\therefore e = \frac{I}{A \times y_{max}} = \frac{11.78 \times 10^{8}}{94.25 \times 10^{3} \times 200}$

$e = 62.49 mm$

ADD COMMENTlink
written 8 days ago by gravatar for bharathchippa49 bharathchippa490
Please log in to add an answer.