0
489views
Express the matrix \( A =\begin{bmatrix}1 & 0& 5& 3\\-2& 1& 6& 1\\3 & 2& 7& 1\\4& -4& 2& 0\end{bmatrix} \) as the sum of symmetric and skew- symmetric matrices.
1 Answer
0
0views

$A=\begin{bmatrix}1&-2&3&4\-2&1&6&1\3&2&7&1\4&-4&2&0\end{bmatrix}\ A'=\begin{bmatrix}1&0&5&3\-2&1&2&4\3&6&7&2\4&1&1&0\end{bmatrix}\ A+A'=\begin{bmatrix}2&-2&8&7\-2&2&8&-3\8&8&14&3\7&-3&3&0\end{bmatrix} ,\A- A'=\begin{bmatrix}0&2&2&-1\-2&0&4&5\-2&-4&0&-1\1&-5&1&0\end{bmatrix}\ $ $Let\ P= \dfrac 12(A+A') , Q= \dfrac 12(A-A') \

P=\begin{bmatrix}1&-1&4&7/2\-1&1&4&-3/2\4&4&7&3/2\7/2&-3/2&3/2&0\end{bmatrix} ,Q=\begin{bmatrix}0&1&1&-1/2\-1&0&2&5/2\-1&-2&0&-1/2\1/2&-5/2&1/2&0\end{bmatrix}\

P=Symmetric\ and \ Q=skew \ symmetric\

A=P+Q,Matrix A ,expressed \ as\ a\ Symmetic\ and\ Q\ symmetric$

Please log in to add an answer.