| written 4.6 years ago by |
$By \ standard\ Formula\
e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\dfrac{x^4}{4!}....\
=1+x+\dfrac{x^2}{2}+\dfrac{x^3}{6}+\dfrac{x^4}{24}....\
sin (e^x-1)=sin\bigg(1+x+\dfrac{x^2}{2}+\dfrac{x^3}{6}+\dfrac{x^4}{24}-1\bigg)\
=sin\bigg(x+\dfrac{x^2}{2}+\dfrac{x^3}{6}+\dfrac{x^4}{24}.....\bigg)\
But sinx'=x'-\dfrac{x'^3}{3!}+\dfrac{x'^5}{5!}.........\
\therefore\sin\bigg(x+\dfrac{x^2}{2}+\dfrac{x^3}{6}+\dfrac{x^4}{24}....\bigg)\
$ $=\bigg(x+\dfrac{x^2}{2}+\dfrac{x^3}{6}+\dfrac{x^4}{24}..\bigg)- \dfrac 16\bigg(x+\dfrac{x^2}{2}+\dfrac{x^3}{6}+\dfrac{x^4}{24}.\bigg )^3........\
=x+\dfrac{x^2}{2}+\dfrac{x^3}{6}+\dfrac{x^4}{24}.. -\dfrac 16\bigg(x^3-3\dfrac{x^4}2\bigg)\
=x+\dfrac{x^2}2+\dfrac{x^3}6-\dfrac{x^3}6- \dfrac 5{24}x^4\
=x+\dfrac{x^2}2- \dfrac{ 5x^4}{24}-------Proved $

and 4 others joined a min ago.