0
425views
find the rank of the Matrix by reducing it to normal form. [egin{bmatrix}
1 & 1 & 1\
1 & -1 & -1\
3 & 1 & 1
end{bmatrix}]
1 Answer
| written 4.6 years ago by |
$A=\begin{bmatrix}1&1&1\\ 1& -1&-1\\ 3&1&1\end{bmatrix} $
$R_2-R_1,R_3-3R_1\\ \begin{bmatrix}1&1&1\\ 0& -2&-2\\ 0&-2&-2\end{bmatrix} $
$R_3-R_2\\ \begin{bmatrix}1&1&1\\ 0& -2&-2\\ 0&0&0\end{bmatrix}$
$C_3-C_2\\ \begin{bmatrix}1&1&0\\ 0& -2&0\\ 0&0&0\end{bmatrix} $
$C_2-C_1\\ \begin{bmatrix}1&0&0\\ 0& -2&0\\ 0&0&0\end{bmatrix} $
$-\dfrac{1}{2}R_2\\ \begin{bmatrix}I_2&0\\ 0&0\end{bmatrix} \\ is\ reduced\ to\ normal form$
Hence Rank of the matrix is 2