0
425views
find the rank of the Matrix by reducing it to normal form. [egin{bmatrix} 1 & 1 & 1\ 1 & -1 & -1\ 3 & 1 & 1 end{bmatrix}]
1 Answer
0
0views

$A=\begin{bmatrix}1&1&1\\ 1& -1&-1\\ 3&1&1\end{bmatrix} $

$R_2-R_1,R_3-3R_1\\ \begin{bmatrix}1&1&1\\ 0& -2&-2\\ 0&-2&-2\end{bmatrix} $

$R_3-R_2\\ \begin{bmatrix}1&1&1\\ 0& -2&-2\\ 0&0&0\end{bmatrix}$

$C_3-C_2\\ \begin{bmatrix}1&1&0\\ 0& -2&0\\ 0&0&0\end{bmatrix} $

$C_2-C_1\\ \begin{bmatrix}1&0&0\\ 0& -2&0\\ 0&0&0\end{bmatrix} $

$-\dfrac{1}{2}R_2\\ \begin{bmatrix}I_2&0\\ 0&0\end{bmatrix} \\ is\ reduced\ to\ normal form$

 

Hence Rank of the matrix is 2

Please log in to add an answer.