0
5.0kviews
Find nth derivatives of (dfrac{x}{(x-1)(x-2)(x-3)} )
1 Answer
2
757views
| written 4.6 years ago by |
Answer: Using Partial fractions, we get
$\dfrac{x}{(x-1)(x-2)(x-3) }$=${ \dfrac{A}{(x-1)}}+{ \dfrac{B}{(x-2)}}+{ \dfrac{C}{(x-3)}}$
$x=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$
Now at $x=1,$ $1=A(-1)(-2) \Rightarrow A=1/2.$
At $x=2, 2=B(1)(-1) \Rightarrow B=-2.$
And at $x=3, 3=C(2)(1) \Rightarrow C=3/2.$
Hence, $\dfrac{x}{(x-1)(x-2)(x-3) }$ =${ \dfrac{1}{2(x-1)}}-{ \dfrac{2}{(x-2)}}+{ \dfrac{3}{2(x-3)}}$
Finding nth derivative of above, we get
${ \dfrac{(-1^n)(n!)}{2(x-1)^{n+1}}}-{ \dfrac{2(-1)^n (n!)}{(x-2)^{n+1}}}+{ \dfrac{3 (-1)^n (n!)}{2(x-3)^{n+1}}}$
= $(-1)^n (n!)[ { \dfrac{1}{2(x-1)^{n+1}}}-{ \dfrac{2}{(x-2)^{n+1}}}+{ \dfrac{3}{2(x-3)^{n+1}}}]$ Answer
ADD COMMENT
EDIT
Please log in to add an answer.

and 2 others joined a min ago.