0
8.9kviews
Separate into real and imaginary parts of Log (3+4i)
1 Answer
0
2.0kviews
| written 4.6 years ago by |
Let $x=r \cos \theta$ .....................(1)
$y=r \sin \theta$ .............................(2).
Here $x=3, y=4.$ Squaring and adding (1) and (2), we get $x^2+y^2=r^2 \Rightarrow r= \sqrt{x^2+y^2}.$
Dividing (1) by (2), we get $\tan \theta= \dfrac{y}{x} \Rightarrow \theta=\tan^{-1} \bigg(\dfrac{y}x\bigg).$
Thus,
$log(x+iy)=log[r(cos \theta+isin \theta)]$
$=[log(r)+log(cos \theta+isin \theta)]$
$=log r+log[cos(2n \pi+\theta)+isin(2n \pi+\theta)]$
$=logr+log[e^{i(2n \pi+\theta)}]$ (using D'Moivre's Theorem)
$=logr+i(2n \pi+\theta) $ (Since, $log_e^{e^x}=x$ )
$=log \sqrt{(3^2+4^2)}+i(2n\pi+tan^{-1} {4 \over 3})$
$=log5+i(2n\pi+tan^{-1} {4 \over 3})$ Answer.
ADD COMMENT
EDIT
Please log in to add an answer.

and 4 others joined a min ago.