1
4.4kviews
If $log\ tan x=y$ then prove that $sinh(n+1)y+sinh(n-1)y=2 sinh\ ny . cosec2x$
1 Answer
| written 4.5 years ago by |
**To prove if $\ln{\tan{x}}= y$
$ \sinh{\left(n+1\right)y} + \sinh{\left(n-1\right)y} = 2 \sinh{ny}{cosec{2x}}$**
Now, as $\ln{\tan{x}}= y$ we can write,
$ e^{y}=\tan{x}$,
Also by defination of hyperbolic functions
$\sinh{x }= \dfrac{ e^{x} - e^{-x}}{2} $
Hence,
L.H.S. = $ \sinh{\left(n+1\right)y} + \sinh{\left(n-1\right)y}$
$\\ = \dfrac{ e^{\left(n+1\right)y} - e^{-\left(n+1\right)y}}{2} +\dfrac{ e^{\left(n-1\right)y} - …