0
859views
Fit a straight line passing through points (0,1), (1,2), (2,3), (3,4,5), (4,6), (5,7,5).
1 Answer
0
190views

Answer:

We shall solve this problem by  direct method.

x y $x^2$ $y^2$ xy
0 1 0 1 0
1 2 1 4 2
2 3 4 9 6
3 4.5 9 20.25 13.5
4 6 16 36 24
5 7.5 25 56.25 37.5
N=6 ; 15 24.0 55 126.5 83

Let the equation of the line be y =ax+b

Then normal equations are

$\sum y= Na+ b \sum x \\ \therefore 24= 6a+ 15 b \; \; \; \; \dots(1) $

$ and \; \sum xy = a \sum x +b \sum x^2 \\ \therefore 83= 15a + 55 b \; \; \; \; \dots (2) $

 Now, multiply equation (1) by 15 and equation (2) by 6 and then subtract (1) from (2)

$\dfrac{498 \; = \; 90 a \; + \; 330b \; \\ 360\; = \; 90a\; + \; 225 b } { \therefore \; b=1.32} $

$\therefore a = 0.70 $

Hence the equation of the line will be

y=  0.70 x +1.32

Please log in to add an answer.