| written 4.6 years ago by |
As given:
$\tanh\dfrac{u}{2}=\tan\dfrac{x}{2}$
$\therefore \dfrac{u}{2}=\tanh^{-1}\Big({\tan\dfrac{x}{2}}\Big)$
$LHS: \dfrac{u}{2}$
Solving RHS, we get,
$\dfrac{1}{2}\log\Bigg( \dfrac {1+\tan{x\over2}}{{1-\tan{x\over2}}}\Bigg) $ using formula ${\tanh}^{-1} x= \dfrac{1}{2}\log\dfrac{(1+x)}{(1-x)} $
$\displaystyle =\dfrac{1}{2}\log\Bigg(\dfrac{{\tan\dfrac{\pi}{4}+\tan\dfrac{x}{2}}}{1-\tan\dfrac{\pi}{4}\tan\dfrac{x}{2}}\Bigg)$ $\because \tan \Big(\dfrac{\pi}{4}\Big)=1$
$=\dfrac{1}{2}\log \tan\Big({\dfrac{\pi}{4}+\dfrac{x}{2}}\Big)$ $\Big(using\ identity\ : \tan(a+b)= {\tan(a)+\tan(b)\over1-\tan(a)\tan(b)} \Big)$)
$\dfrac u2=\dfrac{1}{2}\log \tan\Big({\dfrac{\pi}{4}+\dfrac{x}{2}}\Big)$
Cancelling (1/2) on both sides,
$\therefore u=\log \tan \Big( \dfrac {\pi}{4} + \dfrac {x}{2} \Big)$
Hence Proved.

and 5 others joined a min ago.