| written 4.6 years ago by |
Step 1:
R1 ⇔ R2
A = 
$\left[\begin{array}{cccc} 1 & 0 & 4 & 3 \\ 0 & 1 & -3 & -1 \\ 3 & 1 & 0& 2 \\ 1 & 1 & -2 & 0 \end{array}\right]$
Step 2:
R3 ⇒ R3 - 3(R1)
R4 ⇒ R4 - R1
A = $\left[\begin{array}{cccc} 1 & 0 & 4 & 3 \\ 0 & 1 & -3 & -1 \\ 0 & 1 & -12 & -7 \\ 0 & 1 & -6 & -3 \end{array}\right]$
Step 3:
C3 ⇒ C3 - 4(C1)
C4 ⇒ C4 - 3(C1)
A = $\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & -3 & -1 \\ 0 & 1 & -12 & -7 \\ 0 & 1 & -6 & -3 \end{array}\right]$
Step 4:
R3 ⇒ R3 - R2
R4 ⇒ R4 - R2
A = $\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & -9 & -6 \\ 0 & 0 & -3 & -2 \end{array}\right]$
Step 5:
C3 ⇒ C3 + 3(C2)
C4 ⇒ C4 + C2
A = $\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -9 & -6 \\ 0 & 0 & -3 & -2 \end{array}\right]$
Step 6:
R3 ⇒ R3 + 3(R4)
A = $\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & -2 \end{array}\right]$
Step 7:
C3 ⇒ C3 / (-3)
A = $\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{array}\right]$
Step 8:
C4 ⇒ C4 + 2(C3)
A = $\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right]$
Step 9:
R3 ⇔ R4
A = $\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$
Rank of matrix A = number of non zero rows
i.e. Rank of matrix A = 3

and 4 others joined a min ago.