0
1.2kviews
By using Taylor's series expand tan-1 x in positive powers of (x-1) upto first four non-zero terms.
1 Answer
| written 4.6 years ago by |
Let
$f(x)=tan^{-1}x$ and $a=1 $
therefore, $ f^{'}(x)={1\over1+x^2}$.....(i)
$f^{''}(x)=-2x.({1+{x^2}})^{-2}$....(ii)
$f^{'''}(x)=-2({1+x^2})^{-2} + 4x.2x({1+x^2})^{-3}$....(iii)
At a=1,
$f(a)=pi/4$
$f^{'}(a)=1/2$
$f^{''}(a)=-1/2$
$f^{'''}(a)=1/2$
By Taylor Series,
$f(x)=f(a)+(x-a)f^{'}(a)+{(x-a)^{2}}f^{''}(a)/2!+(x-a)^{3}f^{'''}(a)/3!+...$
therefore,$f(x)=pi/4+(x-1)/2-(x-1)^{2}/2.2!+(x-1)^{3}/2.3!+...$
therefore,
$tan^{-1}x=pi/4+(x-1)/2-(x-1)^{2}/4+(x-1)^{3}/12+...$