| written 4.6 years ago by |
Part I :
Euler's theorem : If 'u' is a homogenous function of two variables x & y of degree 'n' then Euler's theorem states that $x\dfrac{\partial u}{\partial x}+y\dfrac{\partial u}{\partial y}=n u$
Proof :
Let u=f(x,y) be the homogenous function of degree 'n'.
Let X=xt, Y=yt
$\therefore \dfrac{\partial X}{\partial t}=x\ and\ \dfrac{\partial y}{\partial t}=y\rightarrow (1)$
At $t=1,\rightarrow (2)$
X=x and Y=y
$\dfrac{\partial f}{\partial X}=\dfrac{\partial f}{\partial x}\ and\ \dfrac{\partial f}{\partial Y}=\dfrac{\partial f}{\partial y}\rightarrow (3)$
Now, $f(X,Y)=t^{n}f(x,y)\rightarrow (4)$
$\therefore f\rightarrow X,Y\rightarrow x,y,t$
Differentiate (4) partially w.r.t. 't'
$\dfrac{\partial f}{\partial X}\cdot\dfrac{\partial X}{\partial t}+\dfrac{\partial f}{\partial Y}\cdot\dfrac{\partial Y}{\partial t}=nt^{n-1}f(x,y)$
$\therefore \dfrac{\partial f}{\partial x}\cdot x +\dfrac{\partial f}{\partial y}\cdot y=n(1)^{n-1}f(x,y)$
(From 1,2 & 3)
$\therefore x\dfrac{\partial u}{\partial x}+y\dfrac{\partial u}{\partial y}=n u \rightarrow (5)$
Part II : Verification
Method 1:
$u(x,y)=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\rightarrow (6)$
$\therefore u(X,Y)=\dfrac{\sqrt{XY}}{\sqrt{X}+\sqrt{Y}}$
Now, Put X=xt, Y=yt,
$\therefore u(X,Y)=\dfrac{\sqrt{(xt)(yt)}}{\sqrt{(xt)}+\sqrt{(yt)}}$
$=\dfrac{t\sqrt{xy}}{\sqrt{t}\left ( \sqrt{x}+\sqrt{y} \right )}$
$=t^{1/2}u(x,y)$
$\therefore$ u is homogenous function of degree 1/2.
$\therefore From (5),x\dfrac{\partial u}{\partial x}+y\dfrac{\partial u}{\partial y}=\dfrac{1}{2}u$
$\therefore x\dfrac{\partial u}{\partial x}+y\dfrac{\partial u}{\partial y}=\dfrac{\sqrt{xy}}{2\left ( \sqrt{x}+\sqrt{y} \right )}\rightarrow (7)$
Method 2:
From (6), $u=\dfrac{\sqrt{x}\sqrt{y}}{\sqrt{x}+\sqrt{y}}$
Partially differentiate w.r.t.'x'
$\dfrac{\partial u}{\partial x}=\sqrt{y}\times \dfrac{\left ( \sqrt{x}+\sqrt{y} \right )\cdot\dfrac{1}{2\sqrt{x}}-\sqrt{x}\cdot\dfrac{1}{2\sqrt{x}}}{\left ( \sqrt{x}+\sqrt{y} \right )^{2}}$
$=\dfrac{\sqrt{y}}{\left ( \sqrt{x}+\sqrt{y} \right )^{2}}\times\dfrac{1}{2\sqrt{x}}\left [ \sqrt{x}+\sqrt{y}-\sqrt{x} \right ]$
$=\dfrac{\sqrt{y}}{\left ( \sqrt{x}+\sqrt{y} \right )^{2}}\times\dfrac{1}{2\sqrt{x}}\times\sqrt{y}$
$\therefore x\dfrac{\partial u}{\partial x}=\dfrac{xy}{2\sqrt{x}\left ( \sqrt{x}+\sqrt{y} \right )^{2}}\rightarrow(8)$
Similarly, interchanging 'x' and 'y',
$y\dfrac{\partial u}{\partial y}=\dfrac{yx}{2\sqrt{y}\left ( \sqrt{y}+\sqrt{x} \right )^{2}}\rightarrow (9)$
On adding (8) and (9),
$x\dfrac{\partial u}{\partial x}+y\dfrac{\partial u}{\partial y}=\dfrac{xy}{2\sqrt{x}\left ( \sqrt{x}+\sqrt{y} \right )^{2}}+\dfrac{xy}{2\sqrt{y}\left ( \sqrt{y}+\sqrt{x} \right )^{2}}$
$=\dfrac{xy}{2\left ( \sqrt{x}+\sqrt{y} \right )^{2}}\left [ \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}} \right ]$
$=\dfrac{(\sqrt{x})^{2}(\sqrt{y})^{2}}{2(\sqrt{x}+\sqrt{y})^{2}}\times\dfrac{(\sqrt{y}+\sqrt{x})}{\sqrt{x}\sqrt{y}}$
$=\dfrac{\sqrt{xy}}{2(\sqrt{x}+\sqrt{y})}\rightarrow (10)$
From (7) and (10), Euler's theorem is verified.

and 4 others joined a min ago.