| written 4.6 years ago by |
$27x + 6y - z = 85$
Hence $27x = 85 -6y + z$
$x= \dfrac{ 1}{ 27} (85 - 6y + z)\cdots \mathrm{Equation \ 1}$
$6x + 15y + 2z = 72 $
$15 y = 72 -6x -2z$
$y= \dfrac{ 1}{ 15} (72 - 6x - 2x)\cdots \mathrm{Equation \ 2 }$
$x + y + 54z =110$
$54z= 110 -x - y$
$z= \dfrac{ 1}{54} (110 - x - y)\cdots \mathrm{Equation \ 3}$
First Iteration:
$Put \ y=0,\ z=0\ in\ Equation\ (1)\ to\ find\ x_1, $
$x_1= \dfrac {1}{ 27}(85 - 6y +z)$
$=\dfrac {1}{ 27}(85 - 0 +0)$
$x_1 = 3.15$
- $Put \ x=3.15,\ z=0\ in\ Equation\ (2)\ to\ find\ y_1, $
$y_1=\dfrac {1}{15} (72 -6x -2z)$
$=\dfrac {1}{15}[72 -6(3.15) -0]$
$y_1 = 3.54$
$We\ use\ values\ of\ x_1\ and\ y_1\ to\ find\ z_1\ that\ is\ we\ put\ x=3.15; y=3.54\ in\ Equation\ (3),$
$z_1=\dfrac {1} {54} (110 - x - y)$
$=\dfrac {1} {54} (110 - 3.15 - 3.54)$
$z_1 = 1.91$
Second Iteration:
- $We\ use\ values\ of\ y\ and\ z\ to\ find\ x\ that\ is\ we\ put\ y=3.54; z=1.91\ in\ Equation\ (1)\ to\ find\ x_2;$
$x_2= \dfrac {1}{27} (85 - 6y + z)$
= $\dfrac {1}{27} [85 - 6(3.54) + 1.91]$
$x_2 = 2.43$
- $Put \ x=2.43,\ z=1.91\ in\ Equation\ (2)\ to\ find\ y_2, $
$y_2=\dfrac {1} {15} (72 - 6x - 2z)$
$=\dfrac {1} {15} [72 - 6(2.43) - 2(1.91)]$
$y_2 = 3.57$
- $Put \ x=2.43,\ y=3.57\ in\ Equation\ (3)\ to\ find\ z_2, $
$z_2 =\dfrac {1}{ 54} (110 - x - y)$
= $\dfrac {1}{ 54} (110 - 2.43 - 3.57)$
$z_2 = 1.93$
Third Iteration:
- $Put \ y=3.57,\ z=1.93\ in\ Equation\ (1)\ to\ find\ x_3, $
$x_3 = \dfrac {1}{27} (85 - 6y + z)$
$=\dfrac {1}{27} [85 - 6(3.57) + 1.93]$
$x_3 = 2.43$
$Put \ x = 2.43,\ z=1.93\ in\ Equation\ (2)\ to\ find\ y_3,$
$y_3 = \dfrac {1}{15} (72 - 6x - 2z)$
$= \dfrac {1}{15} [72 - 6(2.43) - 2(1.93)]$
$y_3 = 3.57$
- $Put \ x= 2.43,\ y=3.57\ in\ Equation\ (3)\ to\ find\ z_3,$
$z_3=\dfrac {1}{54} (110 - x - y)$
$=\dfrac {1}{54} (110 - 2.43 - 3.57)$
$z_3 = 1.93$
- $As\ the\ second\ and\ third\ iteration\ give\ same\ values,\ x = 2.43, y = 3.57, z=1.93$

and 4 others joined a min ago.