0
480views
Find the value of $\lambda$ for which the equations \[x_1+2x_2+x_3=3,\ x_1+x_2+x_3=\lambda{},\ 3x_1+x_2+3x_3={\lambda{}}^2\] has a solution & solve them completely for each value of $\lambda$
1 Answer
0
2views

$x_1+2x_2+x_3=2 \ x_1+x_2+x_3= \lambda \ 3x_1+x_2+3x_3 = \lambda^3$ These given set of equations can be written in Matrix form as AX=B $\begin{bmatrix} 1 &2 &1 \1 &1 &1 \3 &1 &3 \end{bmatrix} \begin{bmatrix} x_1\x_2 \x_3 \end{bmatrix} = \begin{bmatrix} 3\\lambda \\lambda^2 \end{bmatrix}$ The augmented Matrix A:B is $\begin{bmatrix} 1 &2 &1 …

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.