0
313views
\[ If\ y=\frac{\sin^{-1}x}{\sqrt{1-x^2}}\ \\ prove\ that\\ \left(1-x^2 \right)y_{n+2}- \left(2n+3\right)xy_{n+1}- \left(n-1\right)^2y_n=0\ \ hence\ find\ y_n \left(0\right) \]
1 Answer
0
0views

$y\times \sqrt{1-x^2}= \sin^{-1}x $ Differentiating implicitly w.r.t x, $y_1 \sqrt{1-x^2}+ y \dfrac {(1-x^2)'}{2 \sqrt{1-x^2}} = \dfrac {1}{\sqrt{1-x^2}} $ $Multiplying \ by \ \sqrt{1-x^2} \ on \ both \ sides, \ (1-x^2)y_1+y\dfrac {-2x}{2}=1 \ (1-x^2)y_1-xy=1 \ \cdots (A)$ Differentiating implicitly w.r.t x, $(1-x^2)y_2 + (-2x)y_1 - y - xy_1 =0 \ (1-x^2)y_2-3xy_1-y=0 \ \cdots (B)$ Differentiating n times, by lebnitz theorem, $(1-x^2)y_{n+2}+ (-2x)(n)y_{n+1}+ (-2)\left (\dfrac {n(n-1)}{2} \right )y_n-3xy_{n+1}-3 (1)(n)y_n-y_n=0 $ $(1-x^2)y_{n+2}+ (-2nx-3x)y_{n+1}+ (-n (n-1)-3n-1)y_n=0 \ (1-x^2)y_{n+2}- (2n+3)xy_{n+1}- (n^2-n+3n+1)y_n=0 \ (1-x^2) y_{n+2}- (2n+3)xy_{n+1}- (n+1)^2y_n=0 \ \dots (C)$ Plug in x=0, in (A), (B), (C) $y_1(0)=1=1^2 \ y_2(0)-y(0)=0 \ \therefore y_2(0)=0 \ y_{n+2}(0)-0 - (n+1)^2 y_n(0)=0 \ y_{n+2}(0) = (n+1)^2 y_n (0) $ $plug \ in \ n=1,2,3, \cdots $ $y_3(0)=4^2(1)=16=4^2 \ y_4(0)=5^2 (0)=0 \ y_5 (0)=36 (16)=24^2=6^24^2 \ y_6(0)=49(0)=0 \ y_7(0)=64(24^2)=192^2 = 8^26^24^2 $ $Hence, \ y_n (n=even)=0$ $y_n(n=odd)= (n+1)^2 (n-1)^2 (n-3)^2 \cdots 6^24^21^2.$

Please log in to add an answer.