0
13kviews
Find the non-singular matrices P and Q such that PAQ is in Normal Form. Also find rank of A. A= [431624221214516]
1
1.7kviews
written 3.9 years ago by |
Since, A is of dimension 3×4, we can write,
I3AI4=A
[100010001]A[1000010000100001]=[431624221214516]
R22, then R1 interchange R2 gives
[0120100001]A[1000010000100001]=[121143161214516]
R3−12 R1,R2−4R1
[01201−200−61]A[1000010000100001]=[12110−5−320−10−74]
R3−2R2
[01201−200−21]A[1000010000100001]=[12110−5−3200−10]
C2−2C1, C3−C1, C4−C1
[01201−200−21]A[1−2−1−1010000100001]=[10000−5−3200−10]
C2−5
[01201−200−21]A[125−1−10−150000100001]=[100001−3200−10]
C3+3C2, −C3, C4−2C2
[01201−200−21]A[125−15−950−15352500100001]=[100001000010] ⋯(A)
This PAQ is in normal form, where
P=[01201−200−21] and Q=[125−15−950−15352500100001]
and from the right side of (A), the rank of A is 3.
ADD COMMENT
EDIT
Please log in to add an answer.