| written 4.6 years ago by | modified 3.5 years ago by |
Let A be a square matrix of order n.
Part I:
$A=\dfrac{1}{2}(A+A)$
$\therefore A=\dfrac{1}{2}(A+A^{\theta}+A-A^{\theta})$
Let $P=\dfrac{1}{2}(A+A^{\theta})and\ Q=\dfrac{1}{2}(A-A^{\theta})\rightarrow (1)$
Now, $P^{\theta}=\left [ \dfrac{1}{2}\left ( A+A^{\theta} \right ) \right ]^{\theta}=\dfrac{1}{2}\left ( A+A^{\theta} \right )^{\theta}=\dfrac{1}{2}\left [ A^{\theta}+\left ( A^{\theta} \right )^{\theta} \right ]=\dfrac{1}{2}\left [ \dfrac{A^{\theta}}+A \right ]=P$
$\therefore$ P is Hermition.
Similarly,
$Q^{\theta}=\left [ \dfrac{1}{2} \left ( A-A^{\theta} \right )\right ]^{\theta}=\dfrac{1}{2}\left ( A-A^{\theta} \right )^{\theta}=\dfrac{1}{2}\left [ A^{\theta}-(A^{\theta})^{\theta} \right ]=\dfrac{1}{2}[A^{\theta}-A]=\dfrac{-1}{2}\left [ A-A^{\theta} \right ]=-Q$
$\therefore$ Q is skew-Hermitian.
Hence, A=P+Q, where P is Hermitian and Q is skew-Hermitian.
$\therefore$ Every square matrix can be expressed as the sum off Hermitian and skew-Hermitian matrices.
Part II: Uniqueness
Let, if possible, $A=R+S \rightarrow (2)$ where R is Hermitian and S is skew -Hermitian.
$\therefore R=R^{\theta}\ and\ S=-S^{\theta}\rightarrow (3)$
Consider, $A^{\theta}=(R+S)^{\theta}=R^{\theta}+S^{\theta}=R-S (From\ 2)\rightarrow (4)$
$\therefore $ From (1),
$P=\dfrac{1}{2}(A+A^{\theta})=\dfrac{1}{2}\left [ (R+S)+(R-S) \right ]=\dfrac{1}{2}[2R]=R(From\ 2\ and\ 4)$
Similarly, From (1),
$Q=\dfrac{1}{2}(A-A^{\theta})=\dfrac{1}{2}\left [ (R+S)-(R-S) \right ]\dfrac{1}{2}=S(From\ 2\ and\ 4)$
$\therefore A=R+S=P+Q$
Hence, the representation is unique.

and 4 others joined a min ago.