0
476views
Reduce matrix A to normal form and find its rank where \[A={ \left[ \begin{array}{ccc} 1 & 2 & 3 &2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 &5 \end{array} \right]}\]
1 Answer
0
3views

We have

$A= \begin{bmatrix} 1 &2 &3 &2 \\2 &3 &5 &1 \\1 &3 &4 &5 \end{bmatrix}$

By $\begin{matrix} R2 -2R1\\R3-R1 \end{matrix} \begin{bmatrix} 1 &2 &3 &2 \\0 &-1 &-1 &-3 \\0 &1 &1 &3 \end{bmatrix}$

By $\begin{matrix} C2 - 2C1\\ C3-3C1 \\ C4-2C1 \end{matrix} \begin{bmatrix} 1 &0 &0 &0 \\0 &-1 &-1 &-3 \\0 &1 &1 &3 \end{bmatrix}$

By $R2+R3 \begin{bmatrix} 1 &0 &0 &0 \\0 &-1 &-1 &-3 \\0 &0 &0 &0 \end{bmatrix}$

By $\begin{matrix} C3-C2\\ RC4 - 3C2 \end{matrix} \begin{bmatrix} 1 &0 &0 &0 \\0 &-1 &0 &0 \\0 &0 &0 &0 \end{bmatrix}$

By $-R2 \begin{bmatrix} 1 &0 &0 &0 \\0 &1 &0 &0 \\0 &0 &0 &0 \end{bmatrix}$ Which is in normal form.

∴ Rank of A=2

Please log in to add an answer.