0
476views
Reduce matrix A to normal form and find its rank where
\[A={ \left[ \begin{array}{ccc}
1 & 2 & 3 &2 \\
2 & 3 & 5 & 1 \\
1 & 3 & 4 &5 \end{array} \right]}\]
1 Answer
0
3views
| written 4.6 years ago by |
We have
$A= \begin{bmatrix} 1 &2 &3 &2 \\2 &3 &5 &1 \\1 &3 &4 &5 \end{bmatrix}$
By $\begin{matrix} R2 -2R1\\R3-R1 \end{matrix} \begin{bmatrix} 1 &2 &3 &2 \\0 &-1 &-1 &-3 \\0 &1 &1 &3 \end{bmatrix}$
By $\begin{matrix} C2 - 2C1\\ C3-3C1 \\ C4-2C1 \end{matrix} \begin{bmatrix} 1 &0 &0 &0 \\0 &-1 &-1 &-3 \\0 &1 &1 &3 \end{bmatrix}$
By $R2+R3 \begin{bmatrix} 1 &0 &0 &0 \\0 &-1 &-1 &-3 \\0 &0 &0 &0 \end{bmatrix}$
By $\begin{matrix} C3-C2\\ RC4 - 3C2 \end{matrix} \begin{bmatrix} 1 &0 &0 &0 \\0 &-1 &0 &0 \\0 &0 &0 &0 \end{bmatrix}$
By $-R2 \begin{bmatrix} 1 &0 &0 &0 \\0 &1 &0 &0 \\0 &0 &0 &0 \end{bmatrix}$ Which is in normal form.
∴ Rank of A=2
ADD COMMENT
EDIT
Please log in to add an answer.

and 2 others joined a min ago.