0
419views
Find nth order derivative of \[y= \dfrac{x^2+4}{(2x+3)(x-1)^2}\]
1 Answer
| written 4.6 years ago by |
We have
$y=\dfrac {x^2 + 4}{(2x+3)(x-1)^2}$
$ \therefore y = \dfrac {-1}{2x+3} + \dfrac {1}{(x-1)^2} $
Using formula if $ y=\dfrac {1}{(ax-b)}$ then $y_n = \dfrac {(-1)^n n!a^n}{(ax+b)^{n+1}}$
$\therefore y_n = \dfrac {(-1)^n n!2^n}{(2x-3)^{n+1}} + \dfrac {(-1)^n (n+1)!} {(x-1)^{n+2}}$