0
2.9kviews
Prove that tanh-1 (sinθ) = cosh-1 (secθ)
1 Answer
1
441views
| written 4.6 years ago by |
Now, $\text {L.H.S:} \tanh^{-1} \sin \theta = \dfrac {1}{2} \log \left ( \dfrac {1+\sin \theta}{1-\sin \theta} \right ) \cdots \ \cdots (1)$
and $\text {R.H.S} \therefore \cosh^{-1} sec \theta$
$=\log \left(\sec \theta + \sqrt{-1+\sec^2 \theta} \right )$
$= \log (\sec \theta + \tan \theta) = \log \dfrac {1+\sin \theta}{\cos \theta}$
$ =\dfrac {1}{2}\log \left ( \dfrac {1+\sin \theta}{\cos \theta} \right )^2 = \dfrac {1}{2} \log \left ( \dfrac {(1+\sin \theta)(1+\sin \theta)}{(1-\sin \theta)(1+\sin \theta)} \right )$
$ =\dfrac {1}{2}\log \left (\dfrac {1+\sin \theta}{1-\sin \theta} \right )\cdots \ \cdots (2)$
From (1) and (2)
$\tanh^{-1} \sin\theta = \cosh^{-1}\sec\theta$
ADD COMMENT
EDIT
Please log in to add an answer.

and 5 others joined a min ago.