| written 4.6 years ago by |
Let $x \ y^2=u$ and $z=2x=v$ hence $f(u,v)=0$
$\therefore \dfrac {\partial f}{\partial x} = \dfrac {\partial f}{\partial u}\cdot \dfrac {\partial u}{\partial x}+ \dfrac {\partial f}{\partial v}\cdot \dfrac {\partial v}{\partial x}=0 \ \cdots \ \cdots (1)$
$ \therefore \dfrac {\partial f}{\partial y} = \dfrac {\partial f}{\partial u}\cdot \dfrac {\partial u}{\partial x} + \dfrac {\partial f}{\partial v} \cdot \dfrac {\partial v}{\partial y}=0 \cdots \ \cdots (2)$
But, $\dfrac {\partial u}{\partial x}=y^2 $ and $\dfrac {\partial u}{\partial y}=2xy$
And, $ \dfrac{\partial v}{\partial x} = \dfrac {\partial z}{\partial x} -2 $ and $ \dfrac {\partial v}{\partial y} = \dfrac {\partial z}{\partial y}$
From (1) and (2), we have
$\dfrac {\partial f}{\partial u}\cdot y^2 + \dfrac {\partial f}{\partial v} \left ( \dfrac {\partial z}{\partial x}-2 \right )=0 \ \cdots \ \cdots (3)$
And, $\dfrac {\partial f}{\partial u}\cdot 2xy+\dfrac {\partial f}{\partial v}\left ( \dfrac {\partial z}{\partial y} \right ) = 0 \ \cdots \ \cdots (4)$
From (3) and (4), we get
$ \dfrac {\left ( \frac {\partial f}{\partial u} \right )}{\left ( \frac {\partial f}{\partial v} \right )} = - \dfrac {\left ( \frac {\partial z}{\partial x}-2 \right )}{y^2} \text{ and } \dfrac {\left ( \frac {\partial f}{\partial u} \right )}{\left ( \frac {\partial f}{\partial v} \right )}= - \dfrac {\left ( \frac {\partial z}{\partial y} \right )}{2xy}$
∴ Equating the two,
$\dfrac {\left ( \dfrac {\partial z}{\partial x}-2 \right )}{y^2} = \dfrac {\left ( \dfrac {\partial z}{\partial y} \right )}{2xy}$
$\therefore 2x \dfrac {\partial z}{\partial x} - 4x = y \dfrac {\partial z}{\partial y}$
$\therefore 2x \dfrac {\partial z}{\partial x} - y \dfrac {\partial z}{\partial y}= 4x$

and 4 others joined a min ago.