| written 4.6 years ago by |
$\dfrac {(a+ib)^{x+iy}}{(a-ib)^{x-iy}}= \alpha + i \beta $ $Let \ a+ib=r e^{it}, \ then \ a-ib=re^{-it}, $ $r=\sqrt{a^2+b^2}, t=\tan^{-1}\left ( \dfrac {b}{a} \right ) $ $\dfrac {(a+ib)^{x+iy}}{(a-ib)^{x-iy}}= \dfrac{(re^{it})^{x+iy}}{(re^{-it})^{x-iy}} = \dfrac {r^xr^{iy}e^{itx}e^{-ty}} {r^xr^{-iy}e^{-itx}e^{-ty}}= r^{2iy}e^{2itx} $ $=e^{2iy\ln r}e^{2itx}= e^{2i(y\ln r + tx)} $ $\left { x^n=e^{n \ln x} \right }$ $\alpha + i \beta = \cos 2 (y \ln r + tx) + i \sin (y \ln r +tx)$ $\left { e^{ip} = \cos p + i \sin p \right }$ Comparing real and Imaginary parts, $\alpha = \cos2 ( y \ln r + tx)= \cos 2 \left ( 2 \ln \left ( \sqrt{a^2+ b^2} \right )+ \tan^{-1} \left ( \dfrac {b}{a} \right )x \right )$ $\alpha = \cos \left ( y \ln (a^2 +b^2)+ 2x \tan^{-1} \left ( \dfrac {b}{a} \right ) \right ) $ $Similarly, \ \beta = \sin \left ( y \ln (a^2+b^2)+ 2x \tan^{-1} \left ( \dfrac {b}{a} \right ) \right )$

and 2 others joined a min ago.