$f(E_C)=\dfrac{1}{1+exp\left[\dfrac{(E_C-E_V )}{KT}\right]}$
We know that,
K = Boltzman constant = 1.38×10-23 J/K
Boltzman constant can be expressed in eV as:
$K=\dfrac{1.38\times10^{-23}}{1.6\times10^{-19}}=86.25\times10^{-6}eV$
Also for an intrinsic semiconductor
$E_C-E_V=\dfrac{E_g}{2}$
$E_C-E_V=\dfrac{1.12}{2}=0.56 eV$
$f(E_C )=\dfrac{1}{1+exp\left[\dfrac{0.56}{86.25\times10^{-6}\times(20+273)}\right]}=\dfrac{1}{1+exp\dfrac{0.56}{22.15956}}$
(∴f(E_C )=\dfrac{1}{1+e^{0.0253} }=0.4936)
Create a free account to keep reading this post.
and 4 others joined a min ago.