0
866views
Find the average and rms value of the waveform.
1 Answer
0
26views
| written 4.7 years ago by |
$v = t\ \ \ \ \ \ \ \ \ 0\lt t\lt 1\\ v=1\ \ \ \ \ \ \ \ \ \ 0\lt t\lt 2$
(i) Average value of the wave form
$V_{avg}=\dfrac{1}{T}\int_0^Tv(t)dt\\ \ \ \ \ \ \ \ =\dfrac{1}{2}\Bigg[\int_0^1tdt+\int_1^21dt\Bigg]\\ \ \ \ \ \ \ \ \ = \dfrac{1}{2}\bigg[\Bigg(\dfrac{t^2}{2}\Bigg)_0^t+\big[t\big]_1^2\Bigg]\\ \ \ \ \ \ \ \ \ \ = \dfrac{1}{2}\Bigg[\dfrac{1}{2}-0+2+1\Bigg]\\ \ \ \ \ \ \ \ \ \ = 0.75 \ V$
(ii) rms value of the wave form
$V_{rms}=\sqrt {\dfrac{1}{T}\int_0^Tv^2(t)dt}\\ \ \ \ \ \ \ \ =\sqrt {\dfrac{1}{2}\Bigg[\int_0^1t^2dt+\int_1^2(1)^2dt}\Bigg]\\ \ \ \ \ \ \ \ = \sqrt {{\dfrac{1}{2}}\Bigg[\Bigg(\dfrac{t^3}{3}\Bigg)_0^1+\big[t\big]_1^2\bigg]}\\ \ \ \ \ \ \ \ =\sqrt {\dfrac{1}{2}\Bigg[\dfrac{1}{3}-0+2-1\Bigg]}\\ \ \ \ \ \ \ \ =0.816\ V$
ADD COMMENT
EDIT
Please log in to add an answer.

and 5 others joined a min ago.