0
872views
Find the value of 'p' sucj that the function f(z) expressed in polar co-ordinates as f(z) = r3 cos p&theta
1 Answer
| written 4.5 years ago by |
Answer:Given function $f(z)=r^3 cosp \theta+ir^psin3 \theta.$ Comparing it with the standard complex function $f(z)=u+iv.$
Here, $u=r^3cosp \theta, v=r^psin3 \theta.$
If the function is analytic, it should satisfy Cauchy-Reimann equation, i.e.,
$\dfrac{\partial u}{\partial r}=\dfrac{1}{r}\dfrac{\partial v}{\partial \theta}$.................(1)
$\dfrac{\partial u}{\partial \theta}=-r\dfrac{\partial v}{\partial r}$..................(2)
Now from (1), $3r^2cosp \theta= \dfrac{3}{r}r^p cos 3 \theta$ …