| written 4.6 years ago by |
Given:
$\overline{r}=xi+yj+zk$
To prove:
$\nabla \log r=\dfrac{\overline{r}}{r^2}$
According to the generalised formula,
$\nabla \phi=\dfrac{\partial\phi}{\partial x}i+\dfrac{\partial\phi}{\partial y}j+\dfrac{\partial\phi}{\partial z}k$
Here,$\phi=\log r....(1)$,
$r^2=x^2+y^2+z^2...(2)$
Differentiate The equation (1) with respect to r we get:
$\dfrac{d\phi}{dr}=\dfrac{1}{r}$
Diffrentiating the equation (2) withe respect to x,yand z we get:
$\dfrac{\partial r}{\partial x}=\dfrac{x}{r},\dfrac{\partial r}{\partial y}=\dfrac{y}{r},\dfrac{\partial r}{\partial z}=\dfrac{z}{r}.$
$\nabla \log \phi=\dfrac{d\phi}{d r}\times\dfrac{\partial r}{\partial x} i+\dfrac{d\phi}{d r}\times\dfrac{\partial r}{\partial y}j+\dfrac{d\phi}{d r}\times\dfrac{\partial r}{\partial z}k $
$\nabla\log \phi=\dfrac{1}{r}\times\dfrac{x}{r}i+\dfrac{1}{r}\times\dfrac{y}{r}j+\dfrac{1}{r}\times\dfrac{z}{r}k$
taking common we get
$\nabla\log \phi=\dfrac{1}{r^2}\big(xi+yj+zk\big)$
$\nabla\log \phi=\dfrac{1}{r^2}\big(\overline{r}\big)$

and 2 others joined a min ago.