0
412views
Prove that \[\int ^b_0 xJ_0(ax)dx=\dfrac{b}{a}J_1(ab)\]
1 Answer
| written 4.6 years ago by |
We have
$\int\ x^n\ J_{n-1} (x)\ dx=x^n\ J_n(x)$
x 0 b
t 0 ab
Consider $I=\int_0^{b}x\ J_0\ (ax)dx$
Put
ax = t
a dx = dt
$dx=\dfrac{dt}{a}$
we get,
$I=\int_0^{ab}\dfrac{t}{a}.J_0(t)\dfrac{dt}{a}$
$I=\dfrac{1}{a^2}[t.J_1(t)]_0^{ab}dt=\dfrac{1}{a^2}[abJ_1(ab)-0]$
$I=\dfrac{b}{a}J_1(ab)$
$\int_0^{ab}x\ J_0(ax)dx=\dfrac{b}{a}J_1(ab)$