0
499views
Use Stoke's Theorem to evaluate \( \int _c\overline{F}.\overline{dr}\ \text{where}\ \bar{F}=x^2\hat{i}-xy\hat{j} \) and C is the square in the plane z=0 and bounded by x=0, y=0, x=a and y=a.
1 Answer
0
7views
| written 4.6 years ago by |
Consider $I=\int_C\ \bar F.\bar {dr}$ where $\bar F=x^2i-xyj\ and\ c \ is\ the \ square\ in\ plane\ with\ x=0, \ y=0, \ x=a\ and\ y=a.$
By Stoke's Theorem
$\int_C\ \bar F.\ \bar{dr}=\iint_S\ \bar N.\nabla \times F\ ds$
Hence $ds=dx\ dy\ and\ \bar N=k$
Consider $\nabla \times \bar F=\left[\begin{matrix} i&j&k \\ \dfrac{\partial }{\partial x} & \dfrac{\partial }{\partial y}& \dfrac{\partial }{\partial z}\\ x^2\ &\ -xy\ &\ 0 \end{matrix}\right]$=$=i(0-0)-j(0-0)+k(-y-0)=-ky$
$\bar N=k$
$\therefore \bar N.\nabla\times \bar F=-y $
We have
$\int_C\bar Fdr=\int_0^a\int_0^a-ydydx--\int_0^a\Bigg[\dfrac{y^2}{2}\Bigg]_0^adx=\dfrac{-a^2}{2}\int_0^adx=\dfrac{-a^2}{2}\big[x\big]_0^a=\dfrac{-a^3}{2}$
$\int_c\ \bar F\ dr=\dfrac{-a^3}{2}$
ADD COMMENT
EDIT
Please log in to add an answer.

and 5 others joined a min ago.