| written 4.6 years ago by |
Given:
$v=e^x.\sin y$
Since we have to prove that v is harmonic function.
The function said to be Harmonic,
If
$\dfrac{\mathrm{∂}^2 u}{\mathrm{∂} x^2}+\dfrac{\mathrm{∂}^2 u }{\mathrm{∂} y^2}=0$
or
$\dfrac{\mathrm{∂}^2 v}{\mathrm{∂} x^2}+\dfrac{\mathrm{∂}^2 v }{\mathrm{∂} y^2}=0$
Here v is given.
Therefore we have to show that
$\dfrac{\mathrm{∂}^2 v}{\mathrm{∂} x^2}+\dfrac{\mathrm{∂}^2 v }{\mathrm{∂} y^2}=0$
Taking partial derivative of v with respect to y.
$\dfrac{\mathrm{∂} v}{\mathrm{∂} y} =\dfrac{\mathrm{∂} }{\mathrm{∂} y} e^x.\sin y$
$\dfrac{\mathrm{∂} v}{\mathrm{∂} y}= e^x.\cos y $______________$\Psi_1(x,y)$
Again taking partial derivative with respect to y.
$\dfrac{\mathrm{∂}^2 v}{\mathrm{∂} y^2} =\dfrac{\mathrm{∂}^2 }{\mathrm{∂} y^2} e^x.\cos y$
$\dfrac{\mathrm{∂}^2 v}{\mathrm{∂} y^2} =e^x.(-\sin y)$
$\dfrac{\mathrm{∂}^2 v}{\mathrm{∂} y^2} =-e^x.\sin y \cdots\cdots(1)$
Taking partial derivative fo v with respect to x.
$\dfrac{\mathrm{∂} v}{\mathrm{∂} x} =\dfrac{\mathrm{∂} }{\mathrm{∂} x} e^x.\sin y$
$\dfrac{\mathrm{∂} v}{\mathrm{∂} x} =e^x.\sin y$______________$\Psi_2(x,y)$
Again taking partial derivative with respect to x.
$\dfrac{\mathrm{∂}^2 v}{\mathrm{∂} y^2} =\dfrac{\mathrm{∂}^2 }{\mathrm{∂} y^2} e^x.\sin y$
$\dfrac{\mathrm{∂}^2 v}{\mathrm{∂} y^2} =e^x.\sin y$_____________(2)
Add 1 & 2
$\dfrac{\mathrm{∂}^2 v}{\mathrm{∂} x^2}+\dfrac{\mathrm{∂}^2 v }{\mathrm{∂} y^2}=e^x.\sin y+(-e^x.\sin y)$
$\dfrac{\mathrm{∂}^2 v}{\mathrm{∂} x^2}+\dfrac{\mathrm{∂}^2 v }{\mathrm{∂} y^2}=e^x.\sin y-e^x.\sin y$
$\dfrac{\mathrm{∂}^2 v}{\mathrm{∂} x^2}+\dfrac{\mathrm{∂}^2 v }{\mathrm{∂} y^2}=0$
Hence v is Harmonic Function.
Now we have to find its corresponding harmonic conjugate i.e. "u" & analytic function "f(z)".
So first we will find f(z) using Milne Thomson Method
Using Milne-Thomson-Method
$f'(z) = Ψ_1(z,0) + i\Psi_2(z,0)$
$=e^z.\cos (0)+i.e^z.\sin (0)$
$ = e^z(1)+i(0) $ _________________$\because \sin 0=0 , \cos 0=1$
$f'(z)= e^z$
Integrating both sides with respect to z
$∫ f'(z).dz = ∫ e^z.dz$
$f(z) = e^z+c$______This is required analytic function.
We know that $f(z)=w=u+iv$ & $z=x+iy$.
Putting these values in above analytic function we get,
$u+iv= e^{(x+iy)}+c$
$ = e^x.e^{iy} +c$ $\because e^{a+b}=e^a.e^b$
$ = e^x.(\cos y + i\sin y) +c$ $ \because e^{iθ}= \cos y +i\sin y$
$u+iv= e^x\cos y + ie^x\sin y+c$
Comparing R.H.S with L.H.S
we get imaginary part v as
$v=e^x\sin y$__________Given in Question.
& real part u as
$u= e^x\cos y +c$
Hence required harmonic conjugate is $\underline {u = e^x\cos y+c}$, & analytic function is $\underline{f(z) = e^z+c} $.

and 2 others joined a min ago.