0
774views
Define solenoidal vector. Hence prove that $( \overline {F} = \dfrac{\overline{a}\times\overline{r}}{r^n} )$ is a solenoidal vector.
1 Answer
| written 4.5 years ago by |
Answer:
Solenoidal: A vector $\overline F$ is called as solonoidal if divergence of $\overline F$ is zero. i.e. $\nabla.\overline F=0$
We have given
$\overline{F}= \dfrac {{\overline {a}} {\times {\overline {r}}}} {r^n} \cdots\cdots(1)$
We know that,
$\nabla=\big(\dfrac \partial {\partial{x}}\hat i+\dfrac \partial {\partial{y}}\hat j+\dfrac \partial {\partial{z}}\hat k) \cdots\cdots(2)$
$\overline a=a_1 \hat{i}+a_2 \hat{j}+a_3 …