| written 4.6 years ago by |
Let the bilinear transformation be $w=\dfrac {az+b}{cz+d} \ \ \to (1)$ (where a,b,c,d are complex constant & ad-bc≠0
$w=\dfrac{z(a+b/z)}{z(c+d/z)} = \dfrac {a+b/z}{c+d/z}$
Put z=∞ (∴1/z=0) and w=i
$\therefore i = \dfrac {a+0}{c+0} $
$\therefore ic =a\to (2)$
Put z=-1 and w=-1 in (1)
$-i = \dfrac {a(-1) +b}{c(-1) +d}$
$\therefore i\ c -i \ d = -a+b $
$\therefore i\ c - i \ d = - i \ c + b \ (From \ 2)$
$\therefore 2i \ c- i\ d = b \to (3)$
Put z=1 and w=-1 in (1)
$\therefore -1 = \dfrac {a(1)+b}{c(1)+d}$
$\therefore -c - d = a+ b \ \to (4)$
Substitute (2) and (3) in (4)
$\therefore -c - d = ic + 2i \ c - i \ d$
$\therefore i \ d - d = i \ c + 2i \ c + c$
$\therefore d(i-1)=3i \ c+c$
$\therefore d=\dfrac {(3i+1)c}{i=1}$
$\therefore d=(1-2i) \ c\to (5)$
Substitute (5) in (3)
$\therefore b=2i \ c-i (1-2i) \ c=(-2+i)c$
$\therefore w=\dfrac {z(ic)+(-2+i)c}{c \ z+(1-2i)c}$
$\therefore w=\dfrac {iz - 2 +i}{z+1-2i}$
is the required bilinear transformation.

and 5 others joined a min ago.