| written 4.6 years ago by |
$\displaystyle L\left[\ \frac{d^2y}{dt^2}+2\frac{dy}{dt}-3y\right]=L\left[ \sin t\right] \\[4ex] \displaystyle Since,\ all\ initial\ conditions\ are\ 0, \\[2ex] \displaystyle s^2Y+2sY-3Y=\frac{1}{s^2+1} \\[2ex] \displaystyle Y\left(s^2+2s-3\right)=\frac{1}{\left(s^2+1\right)} \\[2ex] \displaystyle Y=\frac{1}{\left(s+3\right)\left(s-1\right)\left(s^2+1\right)}=\frac{A}{s+3\ }+\frac{B}{s-1}+\frac{Cs+D}{s^2+1}\ \ \ \\[2ex] \displaystyle 1=A\left(s-1\right)\left(s^2+1\right)+B\left(s+3\right)\left(s^2+1\right)+(Cs+D)\left(s+3\right)\left(s-1\right) \\[2ex] $
$\displaystyle Put\ s=1, \\[2ex] \displaystyle 1=B\left(4\right)\left(1+1\right) \\[2ex] \displaystyle B=\frac{1}{8} \\[2ex] \displaystyle Put\ s=-3 \\[2ex] \displaystyle 1=A\left(-4\right)\left(10\right) \\[2ex] \displaystyle A=\ -\frac{1}{40} \\[2ex] \displaystyle Compare\ the\ co-efficient\ of\ s^3 \\[2ex] \displaystyle 0=A+B+C \\[2ex] \displaystyle C=\ -A-B=\frac{1}{40}-\frac{1}{8}=\ -\frac{1}{10} \\[2ex] \displaystyle Put\ s=0 \\[2ex] \displaystyle 1=A\left(-1\right)+B\left(3\right)\left(1\right)+D\left(3\right)\left(-1\right) \\[2ex] \displaystyle 1=\frac{1}{40}+\frac{3}{8}-3D \\[2ex] \displaystyle D=-\frac{1}{5} \\[2ex] $
$\displaystyle \ Y=\frac{1}{\left(s+3\right)\left(s-1\right)\left(s^2+1\right)}=\ -\frac{1}{40}\frac{1}{s+3}+\frac{1}{8}\frac{1}{s-1}-\frac{1}{10}\frac{s+2}{s^2+1} \\[5ex] \displaystyle Taking\ Inverse\ Laplace\ Transform,\ \\[4ex] \displaystyle y\ \left(t\right)=L^{-1}\left[\frac{1}{40}\frac{1}{s+3}+\frac{1}{8}\frac{1}{s-1}-\frac{1}{10}\frac{s+2}{s^2+1}\right] \\[2ex] \displaystyle y(t)=-\frac{1}{40}L^{-1}\left[\frac{1}{s+3}\right]+\frac{1}{8}\ L^{-1}\left[\frac{1}{s-1}\right]-\frac{1}{10}L^{-1}\left[\frac{s}{s^2+1}\right]-\frac{1}{5}L^{-1}\left[\frac{1}{s^2+1}\right]\ \\[2ex] \displaystyle y(t)=-\frac{1}{40}e^{-3t}+\frac{1}{8}e^t-\frac{1}{10}\cos t-\frac{1}{5}\sin t\ \ \\[2ex]$

and 4 others joined a min ago.