| written 4.6 years ago by |
$\displaystyle Let\ the\ bilinear\ transformation\ be\ \ w=\ \frac{az+b}{cz+d}\ \ \rightarrow{}\left(A\right) \\[2ex] \displaystyle (\ where\ a,b,c,d\ are\ complex\ constants\ and\ ad-bc\not=0) \\[2ex] $
$\displaystyle Put\ z=1\ and\ w=0\ in\ (A) \\[2ex] \displaystyle \therefore{}0=\frac{a+b}{c+d} \\[2ex] \displaystyle a=-b\rightarrow{}\left(B\right) \\[2ex] \displaystyle Put\ z=i,\ w=1\ in\ \left(A\right) \\[2ex] \displaystyle 1=\frac{ai+b}{ci+d}\ \\[2ex] \displaystyle \therefore{}ai+b=ci+d\rightarrow{}\left(C\right) \\[2ex] \displaystyle Put\ z=-1\ ,\ w=\infty{}\ in\ \left(A\right) \\[2ex] \displaystyle \infty{}=\frac{-a+b}{-c+d} \\[2ex] \displaystyle \therefore{}-c+d=0 \\[2ex] \displaystyle c=d\rightarrow{}\left(D\right) \\[2ex] $
$\displaystyle From\ \left(B\right),\ \left(C\right)and\ \left(D\right), \\[2ex] \displaystyle a\left(-1+i\right)=c\left(i+1\right) \\[2ex] \displaystyle c=d=\frac{a\left(-1+i\right)}{1+i}\ \ \\[2ex] \displaystyle w=\ \frac{az+b}{cz+d} \\[2ex] \displaystyle w=\frac{az-a}{\frac{a\left(-1+i\right)}{1+i}z+\frac{a\left(-1+i\right)}{1+i}}\\[3ex] w=\dfrac{(z-1)(1+i)}{(z+1)\left(-1+i\right)}\ \ \\[3ex] \displaystyle \ w=-i\frac{z-1}{z+1}\ \\[2ex]$

and 2 others joined a min ago.