| written 4.6 years ago by |
$\displaystyle \varnothing{}\left(s\right)=\log\left(\frac{s^2+4}{s^2+9}\right)\\[2ex] \displaystyle \varnothing{}\left(s\right)=\log\left(s^2+4\right)-\log\left(s^2+9\right)\\[2ex] \displaystyle {\varnothing{}}^{'}\left(s\right)=\frac{1}{\left(s^2+4\right)}-\frac{1}{\left(s^2+9\right)}\\[2ex] L^{-1}{\varnothing{}}^{'}\left(s\right)=\frac{1}{2}\sin{2t}-\frac{1}{2}\sin{3t}\\[2ex] \displaystyle L^{-1}\varnothing{}\left(s\right)=-\frac{1}{t} L^{-1}\left[{\varnothing{}}^{'}\left(s\right)\right]\\[2ex] $
$\displaystyle =\ -\frac{1}{t}\left[\frac{1}{2}\sin{2t}-\frac{1}{3}\sin{3t}\right]\\[2ex] \displaystyle =-\frac{1}{2t}\sin{2t}+\frac{1}{3t}\sin{3t}$
$\displaystyle ii)\ \frac{s}{\left(s^2+4\right)\left(s^2+9\right)}=\frac{As+B}{\left(s^2+4\right)}+\frac{Cs+D}{\left(s^2+9\right)} \\[2ex] \displaystyle =\left(As+B\right)\left(s^2+9\right)+\left(Cs+D\right)\left(s^2+4\right) \\[2ex] \displaystyle =As^3+9As+Bs^2+9B+Cs^3+4Cs+Ds^2+4D \\[2ex] \displaystyle =s^3\left(A+C\right)+s^2\left(B+D\right)+s\left(9A+4C\right)+9B+4D \\[2ex] $
$\displaystyle Now, \\[2ex] \displaystyle A+C=0\\[2ex] \therefore{}A=-C \\[2ex] \displaystyle 9A+4C=1 \\[2ex] \displaystyle \therefore{}9A-4A=1 \\[2ex] \displaystyle \therefore{}5A=1 \\[2ex] \displaystyle \therefore{}A=\frac{1}{5} \\[2ex] \displaystyle \therefore{}C=-\frac{1}{5} \\[2ex] $
$\displaystyle Also,\ B+D=0 \\[2ex] \displaystyle \therefore{}B=-D \\[2ex] \displaystyle \therefore{}9B+4D=0 \\[2ex] \displaystyle \therefore{}9B-4B=0 \\[2ex] \displaystyle \therefore{}5B=0 \\[2ex] \displaystyle \therefore{}B=0\ \therefore{}D=0\ \\[2ex] \displaystyle \therefore{}\ \frac{s}{\left(s^2+4\right)\left(s^2+9\right)}=\ \frac{1}{5}\bullet{}\frac{s}{s^2+4}-\frac{1}{5}\bullet{}\frac{s}{s^2+9} \\[2ex] $
$\displaystyle Inverse\ Laplace, \\[2ex] \displaystyle \frac{1}{5}\bullet{}L^{-1}\left(\frac{s}{s^2+4}\right)-\frac{1}{5}\bullet{}L^{-1}\left(\frac{s}{s^2+9}\right) \\[2ex] \displaystyle =\frac{1}{5}\cos{2t-}\frac{1}{5}\cos{3t} \\[2ex]$

and 3 others joined a min ago.