SOLUTION :
$$
\begin{vmatrix}
\alpha & x & x & x \\
x & \beta & x & x \\
x & x & \gamma & x \\
x & x & x & \delta
\end{vmatrix}
$$
$$
= \begin{vmatrix}
\alpha & x-\alpha & x-\alpha & x-\alpha \\
x & \beta - x & 0 & 0 \\
x & 0 & \gamma - x & 0 \\
x & 0 & 0 & \delta - x
\end{vmatrix}
$$
$= \alpha (\beta - x)(\gamma - x)(\delta - x) - x[(x - \alpha)(x - \gamma)(x - \delta) + (x - \alpha)(x - \beta)(x - \delta) + (x - \alpha)(x - \beta)(x - \gamma)]$
$= (x - \alpha)(x - \beta)(x - \gamma)(x - \delta) - x[(x - \alpha)(x - \beta)(x - \gamma) + (x - \alpha)(x - \beta)(x - \delta) + (x - \alpha)(x - \gamma)(x - \delta) + (x - \beta)(x - \gamma)(x - \delta)]$
$= f(x) - xf'(x) $