| written 4.6 years ago by |
$\displaystyle i)\ Let\ p(s)=\ 2\ {tanh}^{-1}s \\[2ex] \displaystyle =2\times{}\frac{1\ }{2}log1+\frac{s}{1-s} \\[2ex] \displaystyle =\log(s+1)-log(1-s) \\[2ex] \displaystyle \therefore{}p(s)=\ \frac{1}{s+1}-\frac{1}{1-s}\bullet{}-1\\[2ex] \displaystyle p(s)=\frac{1}{s+1}-\frac{1}{s-1} \\[2ex] $
$\displaystyle Using\ Formula, \\[2ex] \displaystyle \therefore{}L^{-1}\left[2\ {\tan h}^{-1}s\ \ \right]=-\frac{1}{t}L^{-1}\left[\frac{1}{s+1}-\frac{1}{s-1}\right] \\[2ex] \displaystyle =-1/t(e^{-t}-e^t) \\[2ex] \displaystyle =1/t(e^t-e^{-t}) \\[2ex] \displaystyle =1/t\times{}2\sin ht \\[2ex] \displaystyle =2/t\sin ht \\[2ex] $
$ ii)\ Let\ \displaystyle \frac{s+29}{\left(s+4\right)(s^2+9)}=\frac{A}{s+4}+\frac{Bs+c}{s^2+9}\ ..(1)\\[2ex] \therefore{}\ s+29=A\left(s^2+9\right)+\left(Bs+c\right)\left(s+4\right) \\[2ex] \displaystyle \therefore{}\ s+29=\ s^2\left(A+B\right)+s\left(4B+C\right)+9A+4C) \\[2ex] $
$\displaystyle Comparing\ both\ the\ sides, \\[2ex] \displaystyle A+B=0;\ 4B+C=1;9A+4C=29 \\[2ex] $
$\displaystyle On\ solving\ simultaneously, \\[2ex] \displaystyle A=1,\ B=-1;\ C=5 \\[2ex] \displaystyle \therefore{}L^{-1}\left[\frac{s+29}{\left(s+4\right)\left(s^2+9\right)}\right]=L^{-1}\left[\frac{1}{s+4}+\frac{-1s+5}{s^2+9}\right]\ \\[2ex] \displaystyle =e^{-4t}-\cos{3t+\frac{5}{3}\sin t} \\[2ex] $

and 5 others joined a min ago.