0
1.0kviews
Find the Laplace transform of sin t? \[H\left(t-\frac{\pi{}}{2}\right)-H\left(t-\frac{3\pi{}}{2}\right)\]
1 Answer
0
29views

$ L\left[\sin t\bullet{}H\left(t-\frac{\pi{}}{2}\right)-H\bullet{}\left(t-\frac{3\pi{}}{2}\right)\right] \\[2ex] \displaystyle =\ L\left[\ \sin t\bullet{}H\left(t-\frac{\pi{}}{2}\right)\right]-L\left[\ H\bullet{}\left(t-\frac{3\pi{}}{2}\right)\right] \\[2ex] \displaystyle =e^{-\frac{\pi{}s}{2}}\ L\left[\ sin\left(t+\frac{\pi{}}{2}\right)\right]-e^{-\frac{3\pi{}s}{2}}.\frac{1}{s}\ \\[2ex] \displaystyle =e^{-\frac{\pi{}s}{2}}L\left[\ cost\right]-e^{-\frac{3\pi{}s}{2}}\bullet{}\frac{1}{s} \\[2ex] \displaystyle =e^{-\frac{\pi{}s}{2}}\bullet{}\frac{s}{{\ s}^2+1}-e^{-\frac{3\pi{}s}{2}}\bullet{}\frac{1}{s} \\[2ex] \displaystyle =\ \frac{{se}^{-\frac{\pi{}s}{2}}}{\ \ s^2+1}-\frac{e^{-\frac{3\pi{}s}{2}}}{s} \\[2ex] $

Please log in to add an answer.