0
349views
Find Laplace Transform of following \[\left(i\right)\ e^{-4t}\ \int_0^1u\sin{3u\ du}\] \[\left(ii\right)\ \frac{1}{t}(1-\cos{t)}\]
1 Answer
0
2views

$\displaystyle i)\ L\left[\sin{3u}\right]=\frac{3}{s^2+3^2}=\frac{3}{s^2+9\ } \\[3ex] \{L[\sin{at}=\frac{a}{s^2+a^2}] \} $

$\begin{align*} \displaystyle L[u\sin{3u]}&=\ -\frac{d}{ds}\ \left(\frac{3}{s^2+9}\right)\\[2ex] &=\ -3\left(-\frac{2s}{{\left(s^2+9\right)}^2\ }\right)\\[2ex] &=\frac{6s}{{\left(s^2+9\right)}^2} \\[2ex] \end{align*} $

$ \{L\left[t\ f\left(t\right)\right]=\ -\frac{d}{ds}[F(s)] \}\\[3ex] \begin{align*} \displaystyle L\left[\int_0^tu\sin{3u\ }\right]&=\frac{1}{s}\left[\frac{6s}{{\left(s^2+9\right)}^2}\right]\\[2ex] &=\ \frac{6}{{\left(s^2+9\right)}^2} \\[2ex] \end{align*} $

$\{L\left[\int_0^tf\left(t\right)\right]=\frac{1}{s}F(s) \}\\[3ex] \begin{align*} \displaystyle L\left[e^{-4t}\int_0^tu\sin{3u\ }\ \right]&=\frac{6}{{\left({(s+4)}^2+9\right)}^2}\\[2ex] &=\frac{6}{{\left(s^2+8s+25\right)}^2} \\[2ex] \end{align*} $

$\{L\left[e^{at}f\left(t\right)\right]=F(s-a) \}$


 $ii)\frac{1}{t}(1-\cos{t\ }) \\[2ex] \displaystyle L\left[\cos {t\ }\right]=\frac{s}{s^2+1^2\ }=\frac{s}{s^2+1\ } \\[2ex] \displaystyle L\left[1-\cos t\right]=\frac{1}{s}-\frac{s}{s^2+1\ } \\[2ex] \displaystyle L\left[\frac{\ 1-\cos t}{t}\right]=\int_s^{\infty{}}\frac{1}{s}-\frac{1}{2}\times{}\frac{2s}{s^2+1\ }ds\ \\[2ex] \displaystyle ={\displaystyle \ln{s]}}_s^{\infty{}}-\frac{1}{2}{\left[\ln{\left(s^2+1\right)}\right]}_s^{\infty{}}={\left[-\frac{1}{2}\ln{\left(\frac{s^2+1}{s^2}\right)}\ \right]}_s^{\infty{}} \\[2ex] \displaystyle =-\frac{1}{2}\left(\left[\lim_{s\rightarrow{}\infty{}}{\ln{\left(1+\frac{1}{s^2}\right)}}\right]-\ln{\left(\frac{s^2+1}{s^2}\right)}\ \right) \\[2ex] \displaystyle =\ -\frac{1}{2}\left(\ln{\left(1+0\right)-\ln{\left(\frac{s^2+1}{s^2}\right)}}\ \right) \\[2ex] \displaystyle =\frac{1}{2}\ln{\left(\frac{s^2+1}{s^2}\right)} \\[2ex] $

Please log in to add an answer.