0
7.4kviews
Check whether following polynomials are Hurwitz or not
\[
(i) s^3+4s^2+5s+2 \\
(ii) s^4+s^3+2s^2+3s+2
\]
1 Answer
| written 4.6 years ago by |
(i) $s^3+4s^2+5s+2$
$even\ part\ of\ F\left(s\right)=M\left(s\right)=4s^4+2 $
$odd\ part\ of\ F\left(s\right)=N\left(s\right)=s^3+5s $
$Q\left(s\right)=\dfrac{N\left(s\right)}{M\left(s\right)}$
As all terms of equations are positive, the given function is Hurwitz
(ii) $s^4+s^3+2s^2+3s+2$
$Even\ part\ of\ F\left(s\right)=M\left(s\right)=s^4+2s^2+2 $
$Odd\ part\ of\ F\left(s\right)=N\left(s\right)=s^3+3s $
$2\left(s\right)=\dfrac{M\left(s\right)}{N\left(s\right)} $
Since two quotient terms are negative the given function is not Hurwitz