Assuming H(s) = 1
$\therefore{}G\left(s\right)H\left(s\right)=\dfrac{2(s+0.25)}{s^2\ (s+1)(s+0.5)}=\dfrac{2\times{}0.25}{0.5}\ \ \dfrac{1+45}{s^2\left(1+s\right)\left(1+2s\right)}$
$k=\dfrac{2\times{}0.25}{0.5}=1 $
$s^n=s^{-2} $
$\therefore{}G\left(s\right)H\left(s\right)=\dfrac{1+45}{s^2\left(1+s\right)\left(1+2s\right)}\ $
$n=-2 $
Various factor of G(s) are
- $ 2 \ poles\ at\ origin, straight\ line\ of\ slope - 40dB/dec\\ \ \ \ \ \ \ passing\ through\ intersection\ of \omega{}=1 \ \&\ 0dB. $
- $Simple\ zero\ …
Create a free account to keep reading this post.
and 5 others joined a min ago.