0
4.0kviews
Draw Bode plot for the function G(s). Find gain margin, phase margin and comment on stability. \[ G(s)= \frac{2(s+0.25)}{s^2(s+1)(s+0.5)} \]
1 Answer
1
199views

Assuming H(s) = 1

$\therefore{}G\left(s\right)H\left(s\right)=\dfrac{2(s+0.25)}{s^2\ (s+1)(s+0.5)}=\dfrac{2\times{}0.25}{0.5}\ \ \dfrac{1+45}{s^2\left(1+s\right)\left(1+2s\right)}$

$k=\dfrac{2\times{}0.25}{0.5}=1 $

$s^n=s^{-2} $

$\therefore{}G\left(s\right)H\left(s\right)=\dfrac{1+45}{s^2\left(1+s\right)\left(1+2s\right)}\ $

$n=-2 $

Various factor of G(s) are

  1. $ 2 \ poles\ at\ origin, straight\ line\ of\ slope - 40dB/dec\\ \ \ \ \ \ \ passing\ through\ intersection\ of \omega{}=1 \ \&\ 0dB. $
  2. $Simple\ zero\ …

Create a free account to keep reading this post.

and 5 others joined a min ago.

Please log in to add an answer.