| written 4.6 years ago by |
$y\left(s\right)=\dfrac{S\left(s+3\right)}{6\left(s+2\right)\left(s+4\right)}$ $\dfrac{y\left(s\right)}{S}=\dfrac{S+3}{6\left(s+2\right)\left(s+4\right)} $ $By\ practical\ functions\ \dfrac{y\left(s\right)}{S}=\dfrac{k_1}{s+2}+\dfrac{k_2}{s+4}$ $\therefore{}k_1=\left(s+2\right)\ \dfrac{y\left(s\right)}{S}\left\vert{}s=-2=\dfrac{s+3}{6\left(s+4\right)}\ \right\vert{}s=-2\ =\dfrac{1}{12}$ $k_2=\left(s+4\right)\dfrac{y\left(s\right)}{s}\left\vert{}s=-4=\dfrac{s+3}{6\left(s+2\right)}\ \right\vert{}s=-4=\dfrac{1}{12}$ $\therefore{}y\left(s\right)=\dfrac{\dfrac{1}{2}s}{s+2}+\dfrac{\dfrac{1}{12}s}{s+4}$ The 2 terms represent admittance of series RC circuit $Y_{RC}1\left(s\right)=\dfrac{\left(\dfrac{1}{R}\right)s}{s+\dfrac{1}{RC}}$ $\therefore{}\begin{array}{ cc} R_1=12\Omega{} & R_2=12\Omega{} \ C_1=\dfrac{1}{24}F & C_2=\dfrac{1}{48}F \end{array}$

and 2 others joined a min ago.